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1 Introduction

The Assisted Cognition Project at the University of Washington develops novel representation and reasoning
techniques in order to dramatically advance the capacity of ubiquitous computing environments to augment
and enhance human capabilities, with a particular emphasis on increasing the independence of people suf-
fering from cognitive limitations.

Assisted Cognition systems (i) sense aspects of an individual’s location and environment, both outdoors
and at home, relying on a wide range of sensors such as global positioning systems (GPS), active badges,
motion detectors, and other ubiquitous computing infrastructure; (ii ) learn to interpret patterns of everyday
behavior, and to recognize user errors, confusion, and distress, using techniques from state estimation, plan
recognition, and machine learning; and (iii ) offer proactive help at appropriate times to users through
prompts, warnings, and other kinds of interventions.

This overview focuses on the key problems in computer science and engineering that lay the technical
foundations for Assisted Cognition. After briefly describing the broad, long-term benefits to society from
work in this area, we will define the scientific challenges we address, review relevant previous results, and
discuss our specific current and future research.

1.1 Motivation and Broader Impact

Errors in memory and problem solving have many causes, ranging from situation-specific information over-
load to brain injury. The mechanisms of the mind are such that even unimpaired individuals exhibit sys-
tematic cognitive errors [133]. The basic technology we are developing will be broadly applicable to many
settings. However, the single most pressing social motivation for Assisted Cognition comes from the need
to promote the well-being and independence of people suffering from cognitive limitations due to aging and
Alzheimer’s disease.

The US is facing an epidemic of Alzheimer’s disease [150]. Today, approximately four million Ameri-
cans suffer from Alzheimer’s disease; by 2050, the number is expected to rise to 15 million people, out of
80 million people worldwide [111]. For many sufferers today high quality, personalized care is unaffordable
[127], despite the fact that a conservative estimate of the cost of the disease to business and the govern-
ment alone is over $100 billion a year [3]. In the coming decades, the demographic shift toward an elderly
population will cause severe shortages of caretakers, regardless of whatever resources are made available.
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Assisted Cognition systems will have significant positive impact on this crisis by extending the time that
individuals with the disease can live at home, and relieving some of the stress suffered by family caregivers
— stress that takes a severe medical and financial toll [97].

In addition to this general benefit to society and the elderly and disabled communities, our project
promotes teaching, training, and understanding among researchers and practitioners in computer science,
nursing, and gerontology — fields which, to this point, have rarely interacted. Additional educational ben-
efits include the support of 6 PhD graduate students. We currently offer a graduate seminar on Assisted
Cognition that is attended by computer science, medical, and nursing students and faculty, and plan to offer
a mixed undergraduate / graduate course on the topic in the 2003-2004 academic year.

1.2 Example Applications

We are designing and prototyping several Assisted Cognition systems in order to concretely explore the
technical challenges in AI and ubicomp this search area presents.

• The ACTIVITY COMPASS is a proactive personal guidance system that learns the typical patterns of
its user’s movements throughout the day, predicts when the user is likely to be lost or off schedule
(for example, about to miss a bus), and helps the user become reoriented. The system has a novel user
interface based on the metaphor of a traditional navigation compass.

• The ADL MONITOR is embedded in a home and tracks the user’s performance of activities of daily
living (ADL’s) such as meal preparation, socializing, and personal grooming, and detects user errors
and abnormal patterns of behavior.

• The ADL PROMPTERworks in conjunction with the monitor to help guide the user to successfully
complete multi-step tasks (such as cooking) that would be difficult or impossible for the user to per-
form without assistance.

Our choice and design of these and other prototype applications is performed in conjunction with our
collaborators from the UW schools of Medicine and Nursing, the Alzheimer’s Disease Research Center
(ADRC), and the private organizations Elite Care and CareWheels.

2 Research Challenges

Our current research addresses the fundamental scientific challenges of developing algorithms and represen-
tations that connect low-level sensor data to high-level models of movement, behaviors, intentions, disabili-
ties, and interventions. At every level, contextual information from higher levels must be able to feed back to
lower-level reasoning processes. To reach this goal we are developing a series of increasingly sophisticated
statistical models, extending the dynamic Bayesian models representations, which we will use to implement
a well-founded theory of cognitive performance and errors. We will develop a decision-theoretic approach
to interventions that takes into account the changing costs and benefits of actions over time.

2.1 Location Estimation

Location estimation is the task of extracting information about a person’s location from a sequence of noisy
sensor readings. In contrast to state-of-the-art location systems, location estimation for Assisted Cogni-
tion cannotbe treated in isolation from higher level activity and goal estimation. For example, knowing
that a person is on her way to the grocery store can help to predict her motion path, thereby increasing
the accuracy of location estimation. The hierarchical probabilistic models described in the next section
will allow us to model and utilize the dependencies between low-level location estimation and high-level
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abstract reasoning. However, such an integration requires us to bridge the gap between continuous sen-
sor data and discrete, high-level representations. We will develop techniques that can bridge this gap by
clustering a user’s data into discreteactivity segments, which are path segments during which a user shows
highly predictable behavior. Such segments can be learned for both indoor and outdoor environments using
expectation maximization (EM) along with location data and an annotated map of the environment.

Another challenge in location estimation is the fact that users frequently switch between environments
with vastly different structure and sensor coverage. For example, a location system has to be able to track
a person in her home, on her way to the coffee shop, and during her walk through the park. We will
developadaptivefilters that are able to switch among or use simultaneously different map representations
and different representations of uncertainty using discrete grid filters, particle filters, and / or Kalman filters
whenever appropriate.

2.2 Behavior, Goal, and Plan Recognition

Behavior recognition explains physical motion in terms of sets of meaningful activities that extend over
time. Goal recognition relates behaviors to the performer’s intention to bring about some state of affairs.
Behaviors and goals can be hierarchically organized into plans.

Representing and reasoning about plans and goals requires us to advance the state of the art in proba-
bilistic dynamic models in two directions:

• Representing hierarchically structured complex activities with relative and absolute metric temporal
constraints between substeps leads us to develop new algorithms for hierarchical statistical represen-
tations. We are focusing in particular on extensions to the expressive hidden semi-Markov models
(HHSMM) formalism. As an example, to track a person preparing breakfast, the system needs to
reason about the relative order and duration of subactivities such as setting the table, preparing tea,
toasting bread,etc.

• Many of the entities in our domain are inherentlyrelational. For example, in order to determine
how much time a person spends socializing (an important measure of health in the elderly) we need
to reason about relationships over sets of individuals. Actions that may be performed in different
ways at different times are most naturally captured by slot/filler relationships between an instance
of the action and its parameters. Even for handling locations it can be useful to explicitly represent
and reason about the functional relationship between an object and a position in space (e.g., “the
place I left my car, wherever that is”). Our work on relational Markov models (RMMs) and dynamic
probabilistic relational models (DPRMs) will allow us to represent and reason about such entities in a
scalable manner; see Fig. 2(c) and Sections 3.3 and 4.3

The combination of hierarchical and relational probabilistic models provides a language and basic inference
algorithms for probabilistic plan recognition. Fundamental research challenges remain, however, in defining
thecontentof those models. In particular, Assisted Cognition systems need to be able to recognize when
the user has made anerror in performing (or failing to perform) a task and may require assistance.

2.3 Modeling Cognitive Impairments

One general strategy for error detection we are developing is based ononline model selection, which can be
used to detect surprising or unusual behaviors. Part of this approach may involve creating error models that
target the particular kinds of cognitive errors the user population may make, based on an underlying theory
of behavioral impairments resulting from specific neurological deficits. Such models support precise error
detection and intervention strategies.
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To create such error models by hand would require developing separate models for each combination of
activity (e.g., “taking a shower”) and neurological deficit (e.g., mild Alzheimer’s disease). Moreover, user
models would have to be fine-tuned to take into account the idiosyncrasies of an individual user’s behavior.
A better approach we are pursuing is to develop general neurologically-based models of cognitive deficits,
and then use these models to predict likely deviations from thenormativedomain-specific models of daily
activities.

2.4 Providing Interventions

A well-founded theory of interventions is critical for Assisted Cognition systems, because unwanted or un-
needed assistance from the system can have serious negative consequences on the user, including increased
loss of independence and motivation, anger, or injury. Beyond domain-level costs, perception of poor per-
formance of a device could lead to early rejection of the system. Furthermore, the tradeoffs for interventions
change over time. For example, if the user normally eats lunch at noon but has not eaten by 12:05, a prompt
from the system may be intrusive; by 12:45, however, the value of prompting the user to eat may be greater
than the potential cost of irritating him.

We will meet this challenge by exploiting and extending work on decision-theoretic control of action in
uncertain contexts, so that the intervention strategies can take into account the probability distributions over
observed behaviors, inferred mental state, and predicted reactions to system actions. Particular intervention
strategies may also need to take into account the inferred neurological cause of the user error, using the
models mentioned in the previous section. The same overt behavior may have distinct (and even comple-
mentary) neurocognitive causes, and the intervention required to compensate for the deficit may be quite
different depending on the cause.

3 Prior Results
3.1 Location Estimation

Estimating the location of a person using sensor information along with a map of an indoor or outdoor en-
vironment is extremely similar to mobile robot localization. In robot localization, the task is to estimate the
position of a mobile robot based on a map and sensor data collected by the robot [51]. Over the last years, we
investigated several variants of dynamic Bayes filters in the context of robot localization and people track-
ing [21, 20, 49, 47, 51, 137]. In various experiments we demonstrated the advantages of rich, non-parametric
representations over more restricted representations such as Gaussians used in Kalman filters [58, 59, 98].
As a consequence of this research, we introduced particle filters [41] as a powerful tool for state estimation
in robotics [47, 48, 51]. The idea of particle filters is to represent probability densities by sets of samples.
This representation allows particle filters to efficiently represent arbitrary, multi-modal distributions over
a state space. By sampling in proportion to observation likelihood, particle filters focus computational re-
sources on regions with high probability, where things really matter. Due to these advantages, particle filters
have been applied with great success to complex, non-linear estimation problems including speech recog-
nition [158], mobile robot navigation [51], computer vision [71], system monitoring [91, 103], and fault
diagnosis [156, 33]. In addition to robot localization, we demonstrated the superior performance of particle
filters for tracking the locations of people using a mobile robot equipped with a laser range-finder [136, 137].

Despite these encouraging results, our research shows that there is not a single, best representation
for uncertainty in localization. The choice of representation strongly depends on the environment (map),
the noise in the sensor data, and the uncertainty of the belief. For example, we recently showed that the
efficiency of particle filters can be greatly improved byadapting the filtering process to the estimation
problem [46, 86, 87]. In this project, we will build on our knowledge of sensing technologies for people
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tracking [60] and our experience in robot localization to develop highly robust and efficient methods for
estimating the locations of people in different environments.

3.2 Bayesian User Modeling

Over the last decade, there has been significant research and development onuser modeling, centering on
the creation and use of predictive models of user goals and needs conditioned on observed behavior. Several
investigators have highlighted the importance of statistical models in user modeling [77, 64]. Compelling
applications have included the modulation of the display of information in high-stakes settings [63], the
identification of the ideal nature and timing of assistance to provide users working with software [64, 62],
reasoning about the next moves of a user in online games [1], the reasoning about ideal pedagogical strate-
gies [29], the ideal timing and modality for alerting users about important messages [65], and the availability
and presence of users over time. In all of these applications, researchers have noted the importance of rep-
resenting uncertain relationships among the changing goals of users and sequences of events, given the
typically small keyhole onto a user’s plans provided by sensors.

Static and dynamic Bayesian network models have been employed as the predictive heart of several
systems. As an example, in our Lumiere project [64], temporal Bayesian user models are employed to
infer beliefs about a user’s goals and needs as they work with Office productivity software. A background
competency model, that persists across sessions, takes into consideration the changing abilities of users
with the use of software features with ongoing experiences. The prior beliefs about assistance are updated
with ongoing streams of observations provided by an event monitoring system that reports predicates about
activity over time, including the patterns of a user’s dwells between actions. If a user generates an active
textual query, a Bayesian analysis of the words input by the user is gracefully folded in with the ongoing
analysis of actions. Beyond beliefs about assistance, a Bayesian model is also used to predict the likelihood
that a user desires assistance at different times.

Beyond reasoning about likelihoods, user modeling research has also pursued the linking of Bayesian
networks to online decision analyses of the expected costs and benefits of action. For example, our Lookout
system [62] learns a statistical predictive model over time to compute the likelihood that a user will desire a
calendar service. The inference about the goals of the user is coupled with a decision-theoretic analysis of
the context-dependent costs of taking alternate actions. The system considers a range of actions at different
levels of precision. The Priorities and Notification Platform systems [65, 66] consider the costs and benefits
of alerting users in different ways versus deferring messages to later, by considering a user’s context and the
time-dependent utility of different messaging actions.

3.3 User Modeling with Relational Markov Models

As part of our work on Adaptive Websites [119, 120, 5] we have developed several learning algorithms for
acquiring predictive models of user behavior from observations. Our initial work [4] evaluated the suitability
of previous techniques, including Naive Bayes mixture models, first-order, second-order, and propositional
Markov models. While a mixture of Markov models performed relatively well, we noted that HMMs are
quite limited as a representation language, because their notion of state lacks the structure that exists in
most real-world domains. Furthermore, because the number of parameters of a first-order Markov model is
quadratic in the number of states (and higher for higher-order models), learning Markov models is feasible
only in relatively small state spaces.

Dynamic Bayesian networks (DBNs) generalize Markov models by allowing states to have internal
structure [152]. If the DBN dependency structure is sufficiently sparse, it is possible to successfully learn
and reason about much larger state spaces than with Markov models. However, DBNs are still limited,
because they assume that all states are described by the same variables with the same dependencies. In
many applications, states naturally fall into different classes, each described by a different set of variables.
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For example, we might model a building as a state space where each location is a state. Classes of locations
for a home might include: hallways, regions of the kitchen, areas of the living room,etc..

To exploit this insight, we devisedrelational Markov models (RMMs), a generalization of Markov mod-
els that allows states to be of different types, with a different set of variables associated with each type [7].1

In an RMM, a set of similar states is represented by a predicate or relation, with the state’s variables corre-
sponding to the arguments of the predicate. The domain of each argument can in turn have a hierarchical
structure, over which shrinkage is carried out [99]. RMMs compute the probability of a transition as a
function of the source and destination predicates and their arguments; they excel in large state spaces where
training data is, by necessity, sparse. Preliminary experiments show that RMMs requirefour orders of
magnitudeless training data than traditional Markov models [7].

3.4 Plan Recognition and Temporal Reasoning

Plan recognition is the task of identifying an actor’s plans and goals given a partial view of that actor’s
behavior [135]. Plan recognition was initially studied in the context of natural language understanding [2],
and was largely descriptive in nature. More principled approaches have been investigated by the authors
of this report. Kautz [79] modeled plan recognition logically in a manner that allowed goals and plans
to be described at various levels of abstraction. Etzioniet al. [94, 95, 92, 93] developed a version space
algorithm for plan recognition that is provably sound and polynomial time [94, 93]. Weldet al. developed
goal recognition algorithms using inductive logic programming [90] and version-space algebra [89, 168, 88]
in the context of programming by demonstration.

An important aspect of plan recognition in realistic domains is reasoning about quantitative as well
as qualitative temporal constraints, as we discuss in Sec. 4.2. Weldet al. [116, 151] developed efficient
algorithms and data structures for handling metric constraints in the context of temporal planning. Kautz
et al. established the first complexity results on reasoning with qualitative temporal constraints [159] and
developed efficient algorithms for integrating qualitative and quantitative constraints [81].

3.5 Cognitive Models of Memory and Reasoning

Our research on modeling user errors and providing appropriate cognitive intervention to patients will also
draw upon the past work of Shastri and his collaborators on neurally plausible models of reasoning [147,
139, 149], decision-making [165], planning [54], and episodic memory [138, 146, 143, 145]. The work on
reasoning and decision-making has developed a neurally plausible computational model that demonstrates
how a suitably structured neural network can encode a large body of probabilistic, relational knowledge and
yet perform a broad class of predictive and explanatory inferences with extreme efficiency.

Neuropsychological [153, 27, 126] and imaging data [39, 134, 169] strongly suggests that the hippocam-
pal system (HS) consisting of the hippocampal formation and neighboring cortical areas in the medial tem-
poral lobe plays a critical role in episodic memory function. Moreover, HS subregions are some of the
areas first affected by Alzheimer’s disease [61, 57]. Shastri has developed a representationally adequate and
anatomically and physiologically plausible computational model that predicts (i) the functional roles of each
HS component and the cortical areas interacting with the HS, (ii) the properties of cortically expressed event
schemas/frames underlying episodic memories, and (iii) memory deficits that would result from cell loss in
the hippocampus and high-level cortical circuits encoding semantic knowledge. It also offers biologically
grounded explanations for behavioral findings about human memory such as the fan-effect.

1RMMs are an example of a relational probabilistic representation, combining elements of probability and predicate calculus.
Other representations of this type include probabilistic relational models [52], probabilistic logic programs [112] and stochastic
logic programs [104].
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3.6 Ubiquitous Computing

The University of Washington’s CSE Department has played a leading role in the development of this inter-
disciplinary research community [162]. Since 1997, the University’s Portolano project has created a cutting
edge testbed for designing and deploying a wide range of ubiquitous computing technologies and devices
(e.g., touch-based communication, RF-based localization, zero-configuration sensor networks, etc.) [42].
Another relevant ubiquitous computing project at UW is Labscape [8], which has produced a sensor-based
laboratory assistant for cell biologists This laboratory assistant tackles the problem of tracking progress
through a biologist’s experimental plan based on sensory data (for example, movement of test tubes and
pipettes), in order to automate the process of keeping a laboratory notebook. This form of tracking is a sim-
ple form of plan recognition, where the user specifies a single plan in advance and is willing to cooperate
with the system by explicitly disambiguating his actions in response to on-screen prompts.

3.7 Related Projects

We now briefly relate our work to other projects involving AI, ubiquitous computing, and caregiving.
The Aware Home Research Initiative at Georgia Tech is developing technologies to create a home that

can perceive and assist its occupants [131]. Most of their work has focused on the low-level sensing infras-
tructure and HCI issues [38, 114, 110], although [102] uses stochastic grammars to “parse” videos.

The MIT Media Lab hosts a number of interrelated ubiquitous computing efforts, including Smart
Rooms and Learning Humans [117, 118, 14, 78]. Their work, like ours, is based on probabilistic behav-
ior models, but to date they have not considered hierarchies of plans and goals or user errors. Media lab
projects specific to problems of the elderly include wearable medical monitors [129] and Memory Glasses
[37]. Some of these systems will be tested at The Center for Future Health [128].

Affective Computing [121, 82] studies how a computer can recognize a person’semotionalstate based
on various kinds of sensor readings. Such work could be applied to Assisted Cognition systems as a way to
help determine if a patient is becoming agitated.

The Nursebot Project at CMU [10] aims at developing personal robots to help elderly people during
their everyday lives. Work led by Pollack [100, 28, 122] proposes using planning, temporal reasoning, and
voice prompts to help a user remember when to take medication, eat, and take care of personal hygiene.

4 Current Work

We now discuss the specific research that falls within the Assisted Cognition project, focusing on the fun-
damental contributions to computer science.

4.1 Location Estimation

Estimating the location of people plays a fundamental role in Assisted Cognition systems. We address the
location estimation problem as an instance of Bayesian filtering, which represents the state of a dynamic
system by random variables and estimates posterior distributions recursively using probabilistic models of
sensors and dynamics [51, 84, 40, 91, 103]. The key problem in connecting location estimation to high-level
reasoning is to bridge the gap between continuous, noisy sensor data and discrete, high-level representations.
Consider, for example, the task of tracking a person’s outdoor location using GPS data. Figure 1 shows raw
GPS readings collected by a student over a period of three months (daytime only, manually determined
modes of transportation are indicated by different colors). Each GPS reading provides an estimate of the
person’sxy-location and motion velocity. Most state of the art GPS tracking systems simply project GPS
readings onto maps such as the one shown in the figure. Several researchers suggested using Kalman filters
to integrate GPS sensor readings over time [155, 15, 132]. While such approaches work reasonably well for
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(a) (b) (c)

Figure 1:(a) Data log of GPS positions collected by a student over a period of three months. The map shows an area
of 40 square miles around the UW campus. Colors of GPS positions indicate the different modes of transportation.
The data indicates that it is possible to learn highly predictive models of daily activities. (b) An early prototype of
the Activity Compass utilizing a Palm VII hand-held computer with a custom-built battery-pack and GPS receiver.
Convergence of hand-held computers, cellular telephones and GPS technology promises to make adding external
devices unnecessary. (c) Map of an indoor environment along with the corresponding Voronoi graph.

most applications, they are clearly not sufficient in our context. First, they can not adequately handle sensor
loss due to insufficient satellite coverage in urban environments [23, 31]. Second, they do not provide any
information beyond a person’s location and, finally, they are not able to utilize user-specific information
such as patterns of typical behavior.

Along with a person’s location we will estimate her mode of transportation using GPS velocity readings,
the estimated location of her bike and car, and map information about streets, bus routes, walkways,etc..
Initial experiments indicate that it is possible to reliably estimate transportation modes using velocity profiles
learned from the data shown in Figure 1. Such data, annotated with semantic location information, will also
be used to learn patterns of daily activities like “every morning around 9am, the person takes the bus to
the university”. To extract such information from sequences of GPS readings, we will discretize paths into
activity segmentsduring which the user shows highly predictable behavior. For example, the GPS data in
Figure 1 shows that the person always takes the same bike trail to the university, which suggests representing
the complete path as one abstract action. Clustering continuous trajectories into discrete segments can be
formulated as an incomplete data problem, as showne.g.by [96, 12, 106] for the case of linear Gaussian
models. Hence, using expectation maximization (EM) [36], we can extract discrete actions from user data.
By organizing locations and objects in an abstraction hierarchy (e.g., a specific bus instance, the buses on
one route, the class of all buses, means of transportation) and using our relational Markov model (RMM)
and dynamic probabilistic relational model (DPRM) learning methods (Sections 3.3 and 4.3) we anticipate
vastly improved learning accuracy — even with sparse data. The resulting user-specific model will be able
to accurately track and predict a user’s daily activities. As explained below, we will detect unusual behavior
by comparing the predictive ability of the user model to a general (person-independent) model.

The approaches discussed for outdoor estimation can be transferred to activity estimation in indoor
environments. Here, the map is given by an outline of the building and a person’s location can be estimated
using sensors such as laser range-finders and infrared or ultrasound badge systems [161, 123, 136, 60]. To
combine information collected by a variety of location sensors, we currently investigate the application of
Rao-Blackwellised particle filters to people tracking. Rao-Blackwellised particle filters combine Kalman
filters with the representational richness of particle filters by sampling the non-linear parts of the state space
and solving the linear part analytically conditioned on the samples [40, 108]. In our context, we use particle
filters to address the data association problem,i.e. the problem of determining which sensor measurement is
caused by which person. For each sample, we can assume that data association is solved, thereby allowing
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us to efficiently track people using Kalman filters. First experiments using data collected with six people
moving through an indoor environment show very promising results [50]. In this project we will extend this
work to trackinggroupsof people using the relational models described in Section 3.3.

Many indoor environments targeted in this project are equipped with only a minimum set of location sen-
sors. Hence, we will also investigate how to estimate the location of people based on very sparse information
from inaccurate location sensors such as infrared and ultrasound badge systems [161, 123, 60]. While such
sensors are not accurate enough to estimate the exact location of people, they provide enough information to
estimate locations on a topological level. For example, infrared sensors can detect the presence of a specific
person in a room, and ultrasound sensors give rough estimates of the position of a person. In such situations
of sparse sensor coverage, we propose to estimate the location of people using Voronoi graphs, a structure
well known in the robotics community [22, 24]. As shown in Fig. 1(c), Voronoi graphs represent indoor
environments by a skeleton of the free-space, similar to street maps for outdoor environments. Even with
sparse sensor information, we are confident that it is possible to estimate a person’s location on the Voronoi
graph using particle filters projected onto the graph structure. An additional advantage of Voronoi graphs is
the fact that they provide a natural way to discretize the continuous space of locations, thereby simplifying
the generation of discrete action models (just like street maps for outdoor locations).

The different approaches discussed above will be combined into adaptive Bayes filters that are able
to switch between different models (e.g., outdoor map, indoor Voronoi graph, indoor blueprint) and rep-
resentations (grid-based, Kalman filter, particle filter) depending on the uncertainty and the availability of
sensors.

4.2 Representing Hierarchy and Metric Time

As noted in Sec. 2.2, linking location and movement information to an agents behaviors, plans, and goals
requires reasoning about the hierarchical relationship between abstract actions and subactions, and both
qualitative and quantitative metric constraints. For example, if the system determines that the user places a
kettle on the stove and turns it on, it might infer that she is executing a plan for making a hot beverage, and
that she will (or should) remove the kettle from the stove at a point between 5 and 10 minutes from now.

Dynamic probabilistic models that include events that occur over metric time are called semi-Markov
models [69, 26, 124], and have been mainly studied in the Operations Research community. Hierarchical
dynamic models have been a focus of work in AI [45, 107, 19]. In a hierarchical HMM the world is modeled
by a sequence of hidden Markov models of higher and higher levels of abstraction. A node in a particular
model may include a transition to a node in a less abstract model. Taking such a transition is treated as a
function call that suspends the higher level model, until the called model reaches a termination state. Metric,
non-exponential time is added to the model by associating a probability distribution over the duration that
the system remains in a node before taking a transition, resulting in a hierarchical hidden semi-Markov
model (HHSMM). Murphy [106, 107] proposed a scheme for translating HHSMM’s into dynamic Bayes
nets (DBN) and then applying ordinary exact and approximate DBN inference algorithms.

We are adapting Murphy’s approach to implement a HHSMM to track the daily activities of residents
in an assisted living community run by the Elite Care organization.2 The Elite Care homes in Oakfield
estates are equipped throughout with motion and smart badge sensors, that provide (noisy) information on
the whereabouts of the residents. Fig. 2 shows the probability for the top level node of a generic, three-layer
HHSMM for a resident’s day. Fig. 2(a) plots left the probabilities during filtering, and Fig. 2(b) the output
of fixed lag smoothing (60 minutes lag). Inference was done using Murphy’s Bayes Net Toolbox [105]
running the junction tree algorithm with sparse matrix representations for memory conservation [13, 70]. It
can be seen that especially the smoothed output of the network provides reasonable estimates of a resident’s
activities. The semi-Markov structure allowed the network to distinguish different activities solely based on

2More information on our collaboration with Elite Care appears in Sec. 5.2 below.
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Figure 2:Example output from (a) filtering and (b) fixed lag smoothing of a three-layer HHSMM modeling the daily
activities of an Elite Care resident. The three-layered structure of the network was created by hand, and transition
probabilities generated for each layer individually from a log of three weeks data. Shown are the variables for sleeping,
being awake in one’s room, having meals, briefly going to the kitchen, and socializing (spending time in the common
area). The lower two layers of the network model traveling between locations, the relationship between locations
and sensor measurements, and the duration of different activities. (c) Depicts the space of possible representations
of stochastic sequential processes. Our RMM representation (Section 3.3) adds relation structure to Markov Models.
Our current work explores dynamic probabilistic relational models (DPRMs) and hierarchical DPRMs as described in
Section 4.3.

their duration. Note that the Elite Care data contains only very inaccurate location information indicating
the presence of a specific person in a rather large area.

While confirming the basic soundness of the approach, our experiments also clearly show that better
algorithms and representations are needed in order to scale up to larger, more detailed models and finer-
grained low-level data (the example here required about an hour of CPU time). Handling of action durations
leaves many opportunities for improvement. The current model discretizes metric time, yielding an unattrac-
tive tradeoff: small units are computationally intractable, while coarse units yield poor-quality results. One
approach we will consider is to use parametric representations of time distributions [18]. However, a more
promising approach would be to develop variable-resolution methods in which a coarse scale time model is
piecewise refined until further splitting of time intervals does not cause significant changes in the predictive
distributions. Such an approach is similar to tree-based density estimation [113, 83, 101]. Variable time-
resolution will also lend itself to an anytime implementation; instead of fixing a significance threshold, the
system will continually refine the discretization so as to maximize accuracy given available computational
resources. Finally, we also expect drastic improvements from the application of DPRMs discussed in the
next section.

4.3 Dynamic Probabilistic Relational Models

The most powerful representation available for nondeterministic sequential phenomena is dynamic Bayesian
networks [34], but DBNs are still unable to compactly represent many real-world domains. In particular,
domains can contain multiple objects and classes of objects, as well as multiple kinds of relations among
them; and objects and relations can appear and disappear over time. For example, an elderly cook might
assemble a dinner from myriad ingredients using a variety of appliances, utensils, and operations. Capturing
such a domain in a DBN would require exhaustively representing all possible objects and relations among
them. This raises two problems. The first one is that the computational cost of using such a DBN would
likely be prohibitive. The second is that reducing the rich structure of the domain to a very large, “flat” DBN
would render it essentially incomprehensible to human beings. Our work will address these two problems
by introducing an extension of DBNs that exposes the domain’s relational structure, and by developing
methods for efficient inference in this representation.

Recently, significant progress has been made by combining formalisms that can represent objects and
relations with a principled treatment of uncertainty. Fig. 2(c) depicts the space of possible representations of
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stochastic sequential processes. Probabilistic relational models or PRMs [52] are an extension of Bayesian
networks that allows reasoning with classes, objects and relations. Arelational schemais a set of classes
where each classC is associated with sets of propositional and relational attributes, the latter calledreference
slotsR(C). A probabilistic relational model (PRM)encodes a probability distribution over the set of all
possible instantiationsI of a schema [52]; the semantics of a PRM is defined by unrolling it into a large
Bayesian network with one variable for each attribute of each object in the skeleton. We plan to extend
PRMs to handle dynamic systems in the same way that DBNs extend Bayesian networks. We define two-
time-slice PRMs and dynamic PRMs as follows.
Definition. A two-time-slice PRM (2TPRM)for a schemaS is defined as follows. For each classC and each
propositional attributeA ∈ A(C), we have: (1) Aset of parentsPa(C.A) = {Pa1, Pa2, ..., Pal}, where
eachPai has the formC.B or f(C.τ.B), whereτ is a slot chain containing the special attributepreviousat
most once, andf() is an aggregation function. (2) Aconditional probability modelfor P (C.A|Pa(C.A)).2
Definition. Adynamic probabilistic relational model (DPRM)for a relational schemaS is a pair(M0,M→),
whereM0 is a PRM overI0, representing the distributionP0 over the initial instantiation ofS, andM→ is
a 2TPRM representing the transition distributionP (It|It−1) connecting successive instantiations ofS. 2

For anyT , the distribution overI0, . . . , IT is then given byP (I0, . . . , IT ) = P0(I0)
∏T

t=1 P (It|It−1).
DPRMs are extended to the case where only the object skeleton for each time slice is known in the same
way that PRMs are, by adding to the definition above a set of parents and conditional probability model for
each relational attribute, where the parents can be in the same or the previous time slice. When the object
skeleton is not known (e.g., if objects can appear and disappear over time), the 2TPRM includes in addition
a Boolean existence variable for each possible object, again with parents from the same or the previous
time slice. As with DBNs, we distinguish between observed and unobserved attributes. In addition, we
can consider anActionclass whose domain is the set of actions that can be performed by some agent. The
distribution over instantiations in a time slice can then depend on the action performed in that time slice.

Just as a PRM can be unrolled into a Bayesian network, so can a DPRM be unrolled into a DBN.
However, this DBN may in general contain different variables in different time slices. In principle, we
could perform inference on this DBN using particle filtering. However, the particle filter will likely perform
poorly, because its state space will be huge. We plan to overcome this by adapting Rao-Blackwellisation
to the relational setting [109]. LetUt be the propositional attributes of all objects andVt be their relational
attributes. A Rao-Blackwellised particle is composed of sampled values for all propositional attributes
of all objects, plus a probability vector for each relational attribute of each object. The vector element
corresponding toobj.R[i] is the probability that relationR holds betweenobj and theith object of the target
class, conditioned on the values of the propositional attributes in the particle.

Rao-Blackwellis-ing the relational attributes can vastly reduce the size of the state space which particle
filtering needs to sample. However, if the relational skeleton contains a large number of objects and relations,
storing and updating all the requisite probabilities can still become quite expensive. We believe that this
can be ameliorated if context-specific independencies exist,i.e., if a relational attribute is independent of
some propositional attributes given assignments of values to others [17]. We can then replace the vector of
probabilities with a tree structure (which may grow during the course of prediction) whose leaves represent
probabilities for entire sets of objects. Space precludes a precise definition of thisabstraction treedata
structure, but preliminary experiments show that it is very effective.

After refining our inference algorithms for DPRMs, we will investigate learning methods, so we can
use DPRMs to generate predictive models of human behavior. Our approach will be to extend the work of
Friedman et al. [53, 56]. Given the success of our shrinkage-based approach to learning RMMs [7], we will
attempt to adapt these techniques as well. Finally, we will extend DPRMs to allow hierarchy and metric
time, building upon the techniques described in the previous section.
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4.4 User Errors and Impairments

User errors must be detected by different means, depending on the knowledge available to the user model.
If explicit models of user errors are available, we can incorporate such errors into the state of the user, as
is often done in fault detection for dynamic systems [157, 33]. An error can then be detected whenever
the probability of an error state exceeds a specific threshold. For example, if a specific person typically
takes a wrong turn on the way to the bus stop, then this turn action can be explicitly incorporated as an
error into the user model, thereby allowing an appropriate intervention as soon as the turn action is detected.
Unfortunately, in many cases such explicit error models do not exist since it is impossible to predict all
errors a user might make. Another common approach in dynamic systems is to monitor the residuals of
observations, thereby testing the appropriateness of the underlying model assumptions [11, 166].

We propose an alternative, more capable approach to overcome the limitations of these methods. Our
technique is based ononline model selection, which aims at identifying the model that is best suited to
explain the observed data [166, 125]. The quality of a model is given by its predictive performance,i.e. the
likelihood of the observed data given the model. Multiple models can be compared using Bayes factors [55,
166], which then yield the ratio of posterior model probabilities. To apply model selection in our context,
we will generate genericand user-specific models of activities. Both models are able to track a user’s
activities, but the specific one is tuned towards the typical actions of one particular user. The specific model
additionally contains all errors that are typical for the user. The idea is that as long as the user performs
her usual activities, the tuned model will be much better in predicting these activities. Typical user errors
can also be detected by this specific model. Surprising actions,i.e. potential errors, however, are not well
predicted by the specific model, in which case the generic model receives higher probability. For example,
if a person exits the bus every morning at the same bus stop, then the specific model predicts this action
with very high probability. The general model, however, predicts exiting the bus with a similar probability
for all possible exits. If the person fails to exit the bus at the usual stop, then both models are able to track
this action, but the general model predicts it with higher probability, thereby triggering the detection of a
potential user error. The key advantage of this model-based approach is that it will be able to track even
unusual behavior,i.e. it can generate information such as “the person seems to be lost but I still know where
she is”. Obviously, such an approach can provide valuable information to the user intervention module.

Let us now focus on the problem of learning and modeling user specific errors. Clearly hand-crafting
a separate model for each combination of activity (e.g., a shower) and neurological deficit (e.g., mild
Alzheimer’s disease) will not scale. Instead we propose to use findings from neuropsychology and imaging
to develop a general neurologically-based theory of cognitive and behavioral impairments, and then use this
theory to predict likely deviations from thenormativedomain-specific models of daily activities.

Consider a user schema (model) for walking to the neighborhood drugstore. Over the duration of the
walk, some component of this schema must remember that the destination of the walk is the drugstore. A
second component of the schema must control and coordinate limb movements,etc.. If we annotate the
first component as an “episodic memory operation” and the second as a “sensorimotor operation,” it be-
comes possible to map the neurological deficit associated with, say, mild Alzheimer’s disease (AD) to a
loss/degradation in the first component (here a loss/degradation could mean a change in transition probabil-
ities). The modified model can easily predict that a mild AD patient is likely to take a wrong turn or keep
walking past the store.

To ascertain the underlying causes of a specific cognitive impairment one must know the cell-lossprofile
associated with the neurological deficit (a specification of the loci and rate of cell-loss the cell types primarily
affected by the loss). We will carry out large-scale simulations of Shastri’s neurally plausible models to
examine the behavioral impact of progressive cell-loss associated with neurodegenerative disorders such as
AD. These simulation studies will enable us to predict the intensity and nature of behavioral deficits resulting
from different types of cell-loss and help us understand the causes of these behavioral deficits in functional
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and computational terms. Specifically, these simulation studies will (i) help in developing behavioral models
of patients suffering from AD, (ii ) help in recognizing the underlying causes of errors made by such patients,
and detecting atypical behavior on the part of such patients, and (iii ) enable Assisted Cognition systems to
provide targeted and situation specific intervention that is appropriate given the underlying causes of a
patient’s cognitive impairment.

4.5 Decision Theoretic Intervention Strategies

Assistive applications pose special challenges for research and prototyping in that we assume that users are
carrying out their normal activities, and that computing is primarily performing background monitoring and
analysis. However, to be effective, we must develop methods that can support effective decision making
about if, when, and how to come forward to intervene in an elegant manner.

Poor advice–and the poor timing of even good advice—can lead to the rapid rejection of automated
services for assisting both healthy and impaired users. Prior research has noted that even subtle corrections in
the timing of a service can be critical. As an example, our research on the Lookout project [62] demonstrated
that adjusting the timing of an automated service could qualitatively change the value perceived in the
automation. Coming forward to provide assistance at the wrong time was found to be disruptive, even when
the advice was useful. Recent studies on the psychological studies of the timing of interruptions in healthy
users have pursued the characterization of good and poor times for interrupting users doing different kinds
of tasks [32]. Such research can be leveraged in assistive technologies.

We shall take a decision-theoretic perspective on interventions, focusing on representations and infer-
ence methods for deliberating about the costs and benefits of taking different actions at different times. We
need to develop the means for computing theexpectedcosts and benefits under uncertainty about the world
and user state at hand.

The success of an assistive system that either provide critical information or be disruptive–or irrelevant–
to impaired users hinges critically on machinery for reasoning about the expected value of taking immediate
action, versus waiting for more data to better understand a situation, versus engaging in the active collection
of data [67]. Also, beyond designing appropriate representations and machinery, we must capture a user’s
preferences about alternative services at different times and propagate such preferences into the reasoning
fabric. Finally, it can be important to allow users to directly invoke services. Effective device-user interaction
thus typically requires mechanisms that support an elegant mix of initiatives by the user and the system [62].

We shall explore key research challenges with both developing machinery for supporting effective
decision-theoretic intervention strategies, a mix of user and computer initiatives, and methods for learn-
ing about the preferences of users. Key challenges include: (1) the assessment and representation of time-
dependent utility models that capture expected costs and benefits over time for different settings, (2) the
development of methods for learning a user’s preferences by watching, (3) development of principles and
architectures for deliberating about taking immediate action, versus waiting for more data to better under-
stand a situation, versus engaging in the active collection of data before taking action in assistive settings,
(4) design of user interface conventions linked to underlying machinery for supporting mixed-initiative in-
teraction. We expect innovations in these four open challenge areas to lead to valuable results for assistive
systems for impaired users as well as for technologies that can provide automated services in mainstream
settings.

5 Datasets and Evaluation

We will test our core learning and reasoning algorithms on a broad suite of datasets; we already have access
to the first four data sets, and the fifth should be available Q4 2003.
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• Historical Global Position System (GPS) readings (containing both position and velocity information)
acquired from handheld units over a period of months.

• Elite Care data indicating the movement of people, operation of doors and lights, and other low-level
data from a set of high-tech assisted living residences in Portland Oregon.

• CareWheels data from dwellings of disabled people whose apartments are wired with motion sensing
technology.

• Data from Intel Research Seattle, obtained from active badges, crickets, and laser range-finders.

• In August 2003, the CSE Department will move into a new building, which has been designed in
many ways to support work on ubiquitous computing. In addition to the building-wide wireless net-
work, sensors, and support for wearable computing, we are creating a specially designed lab space
for capturing human activity in fine granularity using a wide variety of sensors:e.g., RF, infrared and
ultrasound sensors, laser range-finders, pressure-sensitive floor panels, motion-capture cameras, and
microphone arrays.

In all work on ubiquitous computing, privacy is a central concern. At a minimum all of our datasets are
anonymized and we are completing a full Human Subjects Review.

5.1 Experimental Evaluation and User Studies

We have described an array of research on problems from location estimation to plan recognition. In each
case, our data sets provide the opportunity to empirically evaluate the performance of isolated system mod-
ules in a series of controlled tests. Due to space limitations, we provide an example of one such an ex-
periment instead of a comprehensive list. Consider, for example, the GPS readings that we have collected
in the context of the activity compass. Because we have annotated the data with meaningful locations and
transportation modes, we plan to measure the extent to which our approach outperforms traditional Kalman
filters. We will also compute the negative log-likelihood of our predictions to determine the absolute quality
of our predictions.

In addition to detailed evaluation of our core technology, We also plan to test advanced versions of three
prototypes (see below) by giving them to nurses and other care givers. Based on their experience, these
professionals will give us feedback on how impaired individuals are likely to react to the devices. Of course,
such professionals are also participating in the design of the Compass and Prompter so we are optimistic as
to our chances of success in this difficult evaluation.

All systems we develop will undergo a full Human Subjects Review before deployment to ensure that
they safeguard the privacy of the clients as well as their physical safety.

5.2 The Activity Compass, ADL Monitor and Prompter

The Activity Compass is designed to address the spatio-temporal confusion that accompanies ordinary age-
related memory loss as well as early-stage Alzheimer’s disease. The system has access to real-time GPS
data and a historical database of several weeks of readings. The Activity Compass chooses when to alert,
and outputs an arrow and an icon that instructs the user on how to reach a destination — an interface
that minimizes cognitive load on the user. An important human computer interface (HCI) question we are
studying is the most appropriate method for negative feedback. The least intrusive approach would simply
take the user’s lack of compliance with the system’s suggestion as negative feedback. However, if the user’s
disease is such that he is sometimes unaware that the device is trying to give him advice, it may be more
appropriate to require the user to explicitly indicate that he is ignoring the suggestion, for example, by
tapping on the screen.
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In conjunction with Elite Care and CareWheels, we are developing the ADLMONITOR and ADL
PROMPTER. Deployed in a home, the ADLMONITOR tracks the user’s performance of activities of daily
living (ADL’s), and detects user errors and abnormal patterns of behavior. Such a system needs to learn
distinct patterns of what is “normal” for each client — for example, for some clients sleeping during the day
is normal, while for others it is not; our approach is describe in Section 4.4.

The ADL PROMPTERworks in conjunction with the monitor to help guide the user to successfully
complete multi-step tasks (such as cooking) that would be difficult or impossible for the user to perform
without assistance. Elite Care provides a perfect testbed for the ADLPROMPTERsince the facility allows
residents full access to kitchen facilities, and they often find great personal satisfaction in helping with meal
preparation. Residents suffering from cognitive loss often wish to continue working in the kitchen, but are
unable to safely and reliably complete multi-step tasks. The ADLPROMPTERwill be designed to monitor
and prompt (only as necessary) a user through the creation of a simple meal.
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Campbell, Yuri A. Ivanov, Arjan Scḧutte, and Andrew Wilson. Perceptual user interfaces: the kid-
sroom.Communications of the ACM, 43(3):60 – 61, 2000.
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